
Best
Available

Copy



AD-A282 286

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1487 May, 1994

Partial Evaluation for Scientific Computing:
The Supercomputer Toolkit ExperienceDTIC
ECTE Andrew Berlin121CE 1berlinfparc.xerox.com

JUL 2 1 1994

Rajeev Surati• F i raj@martigny.ai.mit.edu

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.
The pathname for this publication is: ai-publications/1994/AIM-1487.ps.Z

Abstract

We describe the key role played by partial evaluation in the Supercomputer Toolkit, a parallel computing
system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial
evaluation. The Supercomputer Toolkit parallel processor and its associated partial evaluation-based
compiler have been used extensively by scientists at M.I.T., and have made possible recent results in
astrophysics showing that the motion of the planets in our solar system is chaotically unstable.
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1 Introduction a data-independent program has the effect of removing
all data abstractions and program structure, producing

In 1989, researchers at M.I.T. and Hewlett-Packard be- a purely numerical program that fully exposes the low-
gan a joint effort to create the Supercomputer TooLkit, level parallelism inherent in the underlying computation.
a set of hardware and software building blocks to be For the scientific applications we were targeting, such
used for the construction of special-purpose computa- as orbital mechanics calculations, partial evaluation of
tional instruments for scientific applications. Earlier data-independent calculations produced purely numer-
work ([6],[7]) had shown that partial evaluation of nu- ical programs containing several thousands of floating-
merical programs that are mostly data-independent con- point operations, with the potential for parallel execu-
verts a high-level, abstractly specified program into a tion of 50 to 100 operations simultaneously. However,
low-level, special-purpose program, providing order-of- the parallelism exposed by partial evaluation is difficult
magnitude performance improvement and exposing vast to exploit, because it is extremely fine-grained, at the
amounts of low-level parallelism. A central focus of level of individual numerical operations.
the Supercomputer Toolkit project was to find a way
to exploit this extremely fine-grained parallelism. By 3 The Supercomputer Toolkit System
combining the performance improvements available from
partial evaluation with novel parallel compilation tech- The Supercomputer Toolkit is a parallel processor con-
niques and a parallel processor architecture specifically sisting of eight independent processors connected by two
designed to execute partially evaluated programs, the independent communication busses. The Toolkit system
Supercomputer Toolkit system enabled scientists to run makes effective use of the parallelism exploited by par-
an important class of abstractly-specified programs ap- tial evaluation in two ways. First, within each proces-
proximately three orders of magnitude faster than a con- sor, fine-grain parallelism is used to keep the pipeline of
ventionally compiled program executing on the fastest a floating-point chip set fully utilized. Second, multiple
available workstation. operations can execute in parallel on multiple processors.

This paper presents an overview of the role played The compilation process consists of four major phases.
by partial evaluation in the Supercomputer Toolkit sys- The first phase begins by using partial evaluation to con-
tem, describes the novel parallelism grain-size adjust- vert each data-independent section of a program into
ment technique that was developed to make effective a data-flow graph that consists entirely of numerical
use of the fine-grained parallelism exposed by partial operations. This is followed by traditional compiler
evaluation, and summarizes the various real-worlW scien- optimizations, such as constant folding and dead-code
tific projects that have made use of the Superct-.tputer elimination. The second phase analyzes locality con-
Toolkit system. straints within the data-flow graph and groups fine-grain

operations together to form higher grain-size instruc-
2 Motivation tions known as regions. In the third phase, critical-

path based heuristic scheduling techniques are used to
Scientists are faced with a dilemma: They need to be assign each coarse-grain region to a processor. Finally,
able to write programs in a high-level language that al- the region boundaries are broken down, and instruction-
lows them to express their understanding of a problem, level scheduling is performed to assign computational re-
but at the same time they need their programs to exe- sources to the fine-grain operations that have been as-
cute very quickly, as their problems often require weeks signed to each processor. A very detailed discussion of
or even months of computation time. In the astrophysics the compiler and all of its phases can be found in [3] and
community, the situation had become critical: programs [5].
would be written in a few days in a high level language, Before discussing the details of the Supercomputer
only to have weeks or even months invested in reexpress- Toolkit architecture and compilation techniques, we
ing the problem so that it could make better use of a vec- present a set of measurements intended to provide an
torizing subroutine library; rewriting the entire program idea of the relative importance of the various sources of
in assembly language; or in extreme cases, constructing performance improvement achieved by the Toolkit sys-
special-purpose hardware to solve the problem. ([16]) Al- tem, using a 9-body orbital mechanics programi as an
though partial evaluation promised to provide a solution example.
to this dilemma for an important class of numerically- 1 The performance improvement provided by using
intensive programs, the parallel hardware and compila- partial evaluation to convert a high-level, data-
tion technology required to take full advantage of the indepen-dent program into a low-level, purely nu-
potential of partial evaluation did not exist. merical data-flow graph was measured by express-

Much of the design of the Supercomputer Toolkit was ing the data-flow graph in an rtl-style program ex-
based on the observation (See [7]) that numerical appli- pressed in the C programming language, by using
cations are special in that they are for the most part a C vector to store the numerical value produced
data-independent, meaning that the sequence of numer- by each node in the dataflow graph. Comparison
ical operations that will be performed is independent of this low-level (partially evaluated) C program
of the actual numerical values being manipulated. For
instance, matrix multiply performs the same sequence 'Specifically, five time-steps of a 12th-order Stormer in-
of numerical operations regardless of the actual numeri- tegration of the gravity-induced motion of a 9-body solar
cal values of the matrix elements. Partial evaluation of system.
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to the original Scheme program (compiled by the This focus on data-independent programs was carried to
LIAR Scheme compiler) revealed speed-ups which an extreme, leading to a system that provided extraordi-
typically ranged from 10 to 100 times faster. In nary performance on data-independent code, but which
the case of the 9-body program, partial evaluation required that code containing data-dependent branches
provided a speedup factor of 38x. This speedup be left residual.
factor can be realized through execution in C on In most partial evaluation systems, the partially-
traditional sequential machines as well as through evaluated program is expressed in the same program-
execution on the Supercomputer Toolkit. ming language as the source program, allowing code that

2 The performance improvement provided by the is left residual to intermingle with code that is partially-

ability of each Toolkit processor to make effective evaluated. However, in our system, partially-evaluated
use of fine-grain parallelism to keep the floating- code is executed on a specialized numerical processor
point pipeline full was measured by comparing the that does not support the original source language. Each
sustained rate attained by each Toolkit processor piece of code that is not partially evaluated must be con-
(12.9 Mflops) to the sustained rate attained by the verted (either by hand or by an application-specific pro-
fastest workstation available at the time2 (which gram generator) into the low-level assembly language of
happened to make use of the same floating-point each Toolkit processor. Thus in order to use the Su-
chip set as the Supercomputer Toolkit processor) percomputer Toolkit compiler on a data-dependent pro-
executing hand-optimized code expressed in For- gram, the program must first be divided up into data-
tran (2 Mflops). Thus the Toolkit's processor archi- independent subprograms, each of which are then com-
tecture achieved approximately a 6x performance piled (via partial evaluation and parallel scheduling) to
improvement by enabling multiple fine-grained in- form a high-performance subroutine.
structions to execute in parallel within the floating- For the numerical applications the toolkit was in-
point chip set. tended to be used for, such as the integration of ordinary

differential equations, the division of programs into data-3 The effectiveness of the static scheduling and grain- independent subprograms did not pose a major problem,

size adjustment parallel compilation techniques to astep ltnent in thse problems
as the complexity inherent in these problems tends to

make use of multiple toolkit processors simultane- be isolated in one or two well-defined data-independent
ously was measured by comparing the execution subprograms. However, when people from communities
time of the 9-body program executing on eight outside of the Toolkit's originally intended user base be-
Toolkit processors in parallel to a virtually op- gan to use the Toolkit for problems exhibiting greater
timal uniprocessor implementation of the 9-body data dependence, the poor handling of data-dependent
program. A factor of 6.2x performance improve- branches posed a serious obstacle.
ment was attained by making use of eight proces- It is important to note that there is no technical obsta-
sors in parallel. cle that prevented better handling and limited partial-

The speedups available from partial evaluation, from evaluation of data-dependent branches. Indeed, our orig-
the use of fine-grain parallelism within each processor, inal intention was to implement a compilation process
and from multiprocessor execution are orthogonal. Thus that combined aggressive partial evaluation-based op-
from the "black box" point of view of our scientific user timization of data-independent subprograms with tra-
community, the 9-body program executed in parallel on ditional code generation techniques that would handle
the Supercomputer Toolkit 1413x faster than did the tra- the data-dependent branches. However, this integra-
ditionally compiled high-level Scheme program executed tion with traditional techniques was never completed: as
on a high performance workstation. Of this speedup, soon as the portion of the compiler that handles data-
a factor of 38 resulted directly from partial evaluation independent programs became operational, the allure
and could have been achieved by executing the partially- of the dramatic performance increases available moti-
evaluated program in C on a workstation, while a factor vated scientists to start using the system immediately,
of 37.2 of the speedup resulted from the ability of the using a few lines of assembly language to implement the
Supercomputer Toolkit hardware to make use of the par- residual data-dependencies, and invoking the compiled
allelism exposed by partial evaluation, data-independent subprograms from assembly language

as subroutines. Eventually, a number of the users built
4 Design Goal: Optimization of on top of the Toolkit compiler their own application-

Data-Independent Programs specific program generators that automatically created
the few lines of assembly-language instructions requiredThe Supercomputer Toolkit system was designed based to implement the data-dependent branches of their pro- [

on the observation that in the scientific applications we grams. th
were most interested in, such as the integration of ordi-

nary differential equations, the data-dependent portions 5 The Partial Evaluator
of a program tend to be very small, typically taking the
form of error checks or "Is it good enough yet?" style The Supercomputer Toolkit compiler performs partial
loops, with the vast majority of the computation oc- evaluation of data-independent programs expressed in
curing in the data-independent portions of the program. the Scheme dialect of Lisp by using the symbolic exe-

cution technique described in previously published work 'S2An HP9000/835 by Berlin ([6]). Using this technique, the input data
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structures for a particular problem are provided at com-
pile time, using placeholders to represent those numeri-
cal values that will not be available until execution time.
Partial evaluation occurs by executing the program sym-
bolically at compile time, creating and accessing data-
structures as necessary, and performing numerical op-
erations whenever possible. The partial evaluator only
leaves as residual those operations whose numerical in- M lase
put values will not be available until execution time. The
partially-evaluated program consists entirely of numeri-
cal operations: the execution of all loops, data-structure t
references and creations, and procedure manipulations
occurs at compile time.

Our partial evaluation strategy proved quite effective
on the ordinary differential equation style applications
we originally envisioned that the Toolkit would be used
for. As a wider scope of applications began to develop, . .
the most serious deficiency in our system proved to be
the lack of support for leaving selected data-structure op-
erations residual in the partial evaluation process. For
instance, although users might want an operation such as
matrix multiply to be completely unrolled, they might Figure 1: This is the onsiting ov arcie t f a Stipoiputer
still want the resulting data to be stored in a partic- Toolkit processor node, consisting of a fast floating-point chip
ular matrix format. Our system eliminated all data- set, a 5-port register file, two memories, two integer alu ad-
structures, making it difficult to perform ertain dress generators, and a sequencer.
gramming tricks that rely on the location of a piece
of data in memory, and requiring a data-rearrangement
when interfacing with subroutines that had particular for use by the next operation. By utilizing the paral-

memory-storage expectations. lelism exposed by partial evaluation, the Toolkit com-
piler was able to schedule operations during these inter-

6 The Toolkit Processor Architecture mediate cycles, thereby keeping the floating-point chip
set fully utilized. Indeed, on a wide variety of applica-

Each Supercomputer Toolkit processor is a Very Long tions, the Supercomputer Toolkit compiler was able to
Instruction Word (VLIW) computer. The processor ar- sustain floating-point unit usage rates in excess of 99%.
chitecture is designed to make effective use of the fine- In theory, up to twelve Toolkit processors may be
grain parallelism exposed by partial evaluation by keep- combined to form a parallel computing system, although
ing a pipelined high-performance floating-point chip set the largest system ever constructed is an eight processor
fully utilized. In general, the floating-point chip set pro- system. Each Toolkit processor has its own program-
duces a 64-bit result during every cycle, and requires counter and is capable of independent operation. Spe-
two 64-bit inputs during each cycle. Constructing a pro- cial synchronization and branch control hardware pro-
cessor that can move around enough data to keep the vide the program-counters of the various processors with
floating-point chips busy required the inclusion within the ability to track one another, effectively allowing a
each processor of two independent memory systems, as single program to make use of multiple processors simul-
illustrated in Figure 1. Each memory system has its taneously. The experimental results presented in this
own dedicated integer ALU and register file for generat- paper were performed on an eight processor Supercom-
ing memory addresses, while a third integer ALU han- puter Toolkit, configured so that two independent inter-
dles program-counter sequencing operations. To support processor communication channels were shared by all
interprocessor communication, each processor has two eight processors.
high-speed Input/Output ports attached directly to its
main register files. For a more detailed description of the 7 Parallel Compilation Technology
Supercomputer Toolkit processor architecture, see [2].

Since partial evaluation eliminated all data-structures We have developed parallel compilation software that au-
and higher-order procedure calls, the compiler was able tomatically distributes a data-independent computation
to predict the data needs of the floating-point chips at for parallel execution on multiple processors. Dividing
compile time, giving it the freedom to decide which of up the computation at compile time is practical only be-
the two memory systems each result would be stored cause partial evaluation eliminates the uncertainty about
in, and to begin the data movement necessary to sup- what numerical operations the compiled program will
port a particular floating-point operation many cycles perform, by evaluating conditional branch instructions
in advance of the actual start of the operation. Due related to data-structures and strategy selection at com-
to the pipeline structure of the floating-point chip set, pile time. In other words, all branches of the form "Have
it is possible to initiate an operation during each cycle, we reached the end of the vector yet?" and "Have we
but the result of that operation is often not available been through this loop 5 times yet?", are eliminated at
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compile time, leaving for rim-time execution only those
branches that actually depend on the numerical values of
the results being computed. Thus the partial evaluation In
process is similar to loop unrolling, but is much more ex-
tensive, as partial evaluation also eliminates inherently aM
sequential procedural abstractions and data structures,
such as lists, that would otherwise act as barriers to par- 3M
allel execution.

In the compiler community, a sequence of computa- M
tion instructions ending in a conditional branch is known
as a basic block. The largest basic blocks produced by 3
traditional compilers are usually around 10-30 instruc-
tions in length, and reflect the calculations expressed
within the innermost loop of a program. In contrast, the
basic blocks of a partially evaluated program are usually
several thousand instructions in length. For example, the l
basic-block associated with the 9-body program men-
tioned earlier consisted of 2208 floating-point instruc- n
tions. A limitation of the partial evaluation approach
is that for programs that manipulate large amounts of
data, the basic blocks may actually get too long to fit in o 2 4 6 1 312141615332424336•3234

memory, at which point it is necessary for the program- OpWieO Level PaMlllism Profile CyclsS
mer to declare that certain data-independent branches,
such as outermost loops, should be left intact, limitingthe scope of partial ev'aluation. Figure 2: Parallelism profile of the 9-body problem. This

Eahe bsipe bo ckfpro y partial ev n m graph represents all of the parallelism available in the prob-E ach basic block produced by partial evaluation m ay le , t k n i to a c u t he v r ng a e cy f n m r c l
be represented as a data-independent (static) data-flow lem, taking into account the varying latency of numerical
graph whose operators are all low-level numerical oper- operations.
ations. Previous work ([6]) has shown that this graph
contains large amounts of low-level parallelism. For in-
stance, the parallelism profile for the 9-body program, requaring that mri c esse a s
illustrated in Figure 2, indicates that partial evaluation actually be produced by that processor.
exposed so much low-level parallelism that in theory, 8 Parallel Scheduling Techniques
parallel execution could speedup the computation by a
factor of 69x faster than a uniprocessor execution. How- Previously published work by Berlin and Weise ([4]) sug-
ever, achieving this theoretical maximum speedup factor gested the use of critical-path based parallel scheduling
would require using 516 non-pipelined processors capa- techniques to take advantage of the low-level parallelism
ble of instantaneous communication with one another. 3  exposed by partial evaluation. Critical-path based tech-

In practice, much of the available parallelism must niques, which give priority to the longest computations
be used within each processor to keep the floating- in a program, are very effective at overcoming latency
point pipeline full, it does take time (latency) to coin- limitations, but do not consider bandwidth limitations
municate between processors. As the latency of inter- at all. In other words, a critical-path based scheduler
processor communication increases, the maximum pos- will seek to schedule a non-critical path operation on
sible speedup decreases, as some of the parallelism must any processor that happens to be available, without re-
be used to keep each processor busy while awaiting the gard to the fact that the operands and result of that
arrival of results from neighboring processors. Band- operation may need to be transmitted between proces-
width limitations on the inter-processor communication sors. This approach is only effective in situations where
channels further restrict how parallelism may be used by a large amount of inter-processor communication band-

width is available, making it feasible for many results to
3We originally chose the 9-body program as an exam- be transmitted between processors.

pie to ease comparison with previously published work that Each of the Supercomputer Toolkit 's two inter-
also studied this program, including [11], [6], and [4]. How- processor communication channels can accept one result
ever, there are numerical discrepancies between the theoret- every other cycle. As a result of this communication
ical speedup factors published in this paper and those pre- bandwidth limitation, on an eight processor system, only
sented in our previously published work, due to improvements one out of every eight results produced by a processor
that were made to the constant-folding phase of our compiler. can be transmitted to other processors. Thus on the
As a result of these improvements, the data-flow graph of the Toolkit system, roughly seven out of every eight numer-
9-body program being discussed in this paper has fewer op-
erations than the data-flow graph used in [6] and [4]. All ical results used by a processor must be produced by
graphs and statistics presented in this paper, including the that processor. We first attempted to generate parallel
parallelism profile, have been updated to account for this code for the Supercomputer Toolkit using critical-path
change. based scheduling techniques similar to those suggested
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by Berlin and Weise. Due to communication bandwidth A B C
limitations, the results were dismal: On the 9-body pro-
gram, a speedup factor of only 2.5x was achieved using
eight processors.

9 Grain-Size Adjustment

To overcome the scheduling difficulties associated withD
limited communication bandwidth, we developed a tech-
nique that adjusts the grain-size of the fine-grain paral-
lelism exposed by partial evaluation to match the inter-
processor communication capabilities of the architecture.
Prior to initiating critical-path based scheduling, we per- R
form a locality analysis that groups together operations
that depend so closely on one other that it would not
be practical to place them in different processors. Each
group of closely interdependent operations forms a larger
grain-size instruction, which we refer to as a region.4 In Figure 3: A Simple Region Forming Heuristic. A re-
essence, grouping operations together to form a region is gion is formed by grouping together operations that have
a way of simplifying the scheduling process by deciding in a simple producer/consumer relationship. This process is
advance that certain opportunities for parallel execution invoked repeatedly, with the region growing in size as ad-
will be ignored due to limited communication capabil- ditional producers are added. The region-growing process
ities. Critical-path based scheduling is performed and terminates when no suitable producers remain, or when the
works effectively at the region level, assigning regions to maximum region size is reached. A producer is considered
processors, rather than assigning fine-grain instructions suitable to be included in a region if it produces its result
to processors. solely for use by that region. (The numbers shown within

Since all operations within a region are guaranteed to each node reflect the computational latency of the operation.)
be scheduled onto the same processor, the maximum re-
gion size must be chosen to match the communication
capabilities of the target architecture. For instance, if is chosen appropriately,6 grouping operations together
regions are permitted to grow too large, a single region based on locality prevents the scheduler from making
might encompass the entire data-flow graph, forcing the gratuitous use of the communication channels, forcing it
entire computation to be performed on a single proces- toafocus on s he optio at make more e t

sor! Although strict limits are therefore placed on the to focus on scheduling options that make more effective

maximum size of a region, regions need not be of uni- exoithe lm it y comm unic ation idth.

form size. Indeed, some regions are large, corresponding Exploiting locality by grouping operations into re-

to localized computation of intermediate results, while gions forces closely-related operations to occur on the

other regions are quite small, corresponding to results same processor. Although this reduces inter-processor

that are used globally throughout the computation. communication requirements, it also eliminates many

We have experimented with several different heuristics opportunities for parallel execution. Figure 4 shows the

for grouping operations into regions. The optimal strat- parallelism remaining in the 9-body problem after oper-

egy for grouping instructions into regions varies with the ations have been grouped into regions. Comparison with

application and with the communication limitations of Figure 2 shows that increasing the grain-size eliminated

the target architecture. However, we have found that about half of the opportunities for parallel execution.

even a relatively simple grain-size adjustment strategy The challenge facing the parallel scheduler is to make ef-

dramatically improves the performance of the scheduling fective use of the limited parallelism that remains, while

process. For instance, as illustrated in Figure 3, when taking into consideration such factors as communication
value is used by only one instruction, the producer and latency, memory traffic, pipeline delays, and allocationconsumer of that value are grouped together to form a of resources such as processor buses and inter-processor

region, thereby ensuring that the scheduler will not place communication channels.

the producer and consumer on different processors in an
attempt to use spare cycles wherever they happen to 10 Performance Measurements
be available. Provided that the maximum region sizebe a l e r d t t m iThe final result of compiling the 9-body program using

4The name region was chosen because we think of the the Supercomputer Toolkit compiler is shown in Figure
grain-size adjustment technique as identifying "region" of lo-
cality within the data-flow graph. The process of grain-size 6The region size must be chosen such that the compu-
adjustment is closely related to the problem of graph multi- tational latency of the operations grouped together is well-
section, although our region-finder is somewhat more partic- matched to the communication bandwidth limitations of the
ular about the properties (shape, size, and connectivity) of architecture. If the regions are made too large, communi-
each "region" sub-graph than are typical graph multisection cation bandwidth will be underutilized since the operations
algorithms, within a region do not transmit their results.
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Figure 4: Parallelism profile of the 9-body problem after op- Figure 5: The result of scheduling the 9-body program onto
erations have been grouped together to form regions. Comn- eight Supercomputer Toolkit processors. Comparison with
parison with Figure 2 clearly shows that increasing the grain- with the region-level parallelism profile (figure 4) illustrates
size significantly reduced the opportunities for parallel exe- how the scheduler spread the coarse-grain parallelism across
cution. In particular, the maximum speedup factor dropped the processors. A total of 340 cycles are required to corn-
from 69 times faster to only 34.5 times faster than a single plete the computation. On average, 6.5 of the 8 processors
processor. are utilized during each cycle.

5. 6 Notice how the compiler was able to take the avail- tion of the entire Solar System, incorporating a post-

able parallelism shown in Figure 4 and spread it across Newtonian approximation to General Relativity and cor-
the processors. By utilizing eight processors in paral- rections for the quadrupole moment of the Earth-Moon
lel, the compiler was able to achieve a speedup factor Of system. The longest previous such integration ([211) was
approximately 6.2x faster than a nearly optimal imple- for about 3 million years. The integration performed on

mentation of this program running on a single Toolkit the Supercomputer Toolkit confirmed that the evolution
processor, of the Solar system as a whole is chaotic with a remark-

ably short time scale of exponential divergence of about11 Applications 4 million years. A complete analysis of the integration

A variety of scientific applications made use of the Su- results appears in [1].
percomputer Toolkit system, ranging from numerical in- A novel type of symplectic integration strategy was
tegration of the solar system to clinical genetic coun- developed by Wisdom and Holman for use in this appli-
seling. Some applications utilized only a single Toolkit cation, and was expressed in the Scheme language us-
processor, while others ran the same program on mul- ing an abstract programming style. Partial evaluation
tiple processors simultaneously, or used the automatic specialized this integration strategy for use on the so-
parallelization features of the compiler to execute a sin- lar system problem with a particular force law (gravita-
gle program on eight processors in parallel. We present tion) and a particular solar system configuration. The
an overview of these applications, focusing on the role 100-million-year integration used eight Toolkit proces-
played by partial evaluation, and on the advantages and sors running in parallel. The computation was arranged
difficulties encountered. so that each processor simulated a single solar system,

but with each processor starting with slightly different
Chaos in the Solar System: initial conditions. Chaos was observed by comparing
The Supercomputer Toolkit application having the most the differences between the states that evolved from the
scientific importance was a 100-million-year integra- slightly varying initial conditions. The Toolkit compiler

was used to generate code for each processor indepen-6This figure represents a single time step of the integra- dently. The compiled code for a single processor con-
tion, on which the compiler achieved a speedup factor of 6.5x tains almost 10,000 Toolkit instructions for each integra-
using eight processors. The more conservative speedup fac- tion step, more than 98% percent of which correspond
tor quoted throughout this document for the 9-body problem
refers to five integration time steps, thereby including the to floating-point operations.
overhead of moving data around to restart the computation This application posed somewhat of a challenge to our
after each time step. partial evaluation system, as it violated our simple model
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of programs as consisting of data-independent inner gramming style enabled by partial evaluation permit-
loops surrounded by data-dependent branches. Specifi- ted quad-precision floating-point operations to be sub-
cally, the new integration strategy took advantage of the stituted for double-precision operations with the simple
elliptical nature of the planetary orbits, making exten- replacement of a few procedure definitions.
sive use of selection operations and scientific subroutines, The Orrery verification experiment ran on a single
some of which were heavily data-dependent. Thus this Toolkit processor, since the automatic parallelization
program had data-dependencies at the very core of its portion of the Toolkit compiler was not yet operational
innermost loops. at the time the experiment was performed. Once the

We chose to handle these innermost data dependen- automatic parallelizer was completed, we compiled a
cies by providing a mechanism for leaving subroutines Stormer integration of a full 9 planet solar system, gener-
residual. In our hybrid system, this amounted to allow- ating a program that utilized eight processors in parallel
ing a partially-evaluated program to include a call to a to achieve a factor of 6.2x speedup over the single pro-
data-dependent hand-coded routine, such as sin. By de- cessor Toolkit program. This program, which we refer
veloping a small library of code that could be left "resid- to as an example earlier in this paper, was the first to
ual", that included the trigonometric functions as well take full advantage of the parallelism exposed by partial
as a few selection operations such as "return the second evaluation, and to the best of our knowledge constituted
argument if the first argument is greater than 0", we the fastest integration of the solar system ever achieved.
were able to abstract away these innermost data depen-
dencies, effectively burying them inside of rather simple Circuit Simulation:
subroutines. Hal Abelson, Jacob Katznelson, and Ognen Nastov

Note that an alternative approach would have been wrote several programs that utilized the toolkit to per-
to use techniques for extending the placeholder-based form simulation of circuits like phase locked loops. Some
partial evaluation strategy to allow it to generate code of the problems they studied utilized a runge-kutta in-
that contains selection-style conditional branches, as de- tegrator, which was well suited to the Toolkit environ-
scribed in [7]. We did indeed add these techniques ment, including a Voltage Controlled Oscillator and a
to our front-end partial evaluator, but have not ex- Phase Locked Loop. Both simulations when compiled by
tended the code generation back-end to handle condi- the toolkit compiler were shown to run approximately 6
tional branches, primarily because demand for this func- times faster on a toolkit processor than on the best float-
tionality from our scientific users dropped off once the ing point workstation available at the time, an HP835
subroutine library of selection operations became avail- running a Fortran version of the same program.
able. Partial evaluation was used to specialize the circuit

simulator and integration method for the particular cir-
Orrery Verification Experiment: cuit being simulated. When a straightforward integra-
Another astrophysics application involved verifying re- tion strategy such as 4th-order runge-kutta was used, the
suits that had been obtained in 1988 by G. Sussman and application was almost entirely data-independent, map-
J. Wisdom using the Digital Orrery to demonstrate that ping very well onto the Toolkit architecture. However,
the long-term motion of the planet Pluto, and by impli- simulation of many of the circuits studied required the
cation the dynamics of the Solar System, is chaotic ([15]). integration of a stiff system of differential equations, us-
The Digital Orrery was a special-purpose parallel com- ing a complex and highly data-dependent Gear integra-
puter designed explicitly to integrate the solar system. tion technique. The Gear integration technique uses a
Computations run on the Orrery were parallelized and sparse linear equation solver, which involves significant
programmed in microcode by hand, with one processor data-dependent control flow.
devoted to each planet. In contrast, the program that It was possible to utilize the Toolkit compiler to pro-
executed on the Supercomputer Toolkit was written in duce code for the data-independent portions of these
Scheme, and automatically compiled using the Toolkit's simulations, including the code that implements the dy-
partial evaluation-based compiler. namic equations of the circuit itself, but implementation

The Orrery integration required integrating the po- of the highly data-dependent portions of the GEAR in-
sitions of the outer planets for a simulated time of 845 tegrator had to be performed by hand in assembly lan-
million years (note that this is only 6 planets, rather than guage. This required the assembly language programer
the 9 in the whole solar system), which required running to have knowledge of the storage allocation strategy used
the Orrery continuously for more than three months. by the compiler to store results in memory, which led to a
The same integrations utilizing a 6-body stormer integra- fairly complex and not very well organized set of interac-
tor were performed on a single toolkit processor, showing tions. A much needed enhancement to our system would
that each toolkit processor coupled with the compiled be to provide a way for the programmer to request that
partially evaluated code was about 3 times faster than the compiler adhere to a particular data storage strategy,
the entire multiple processor Digital Orrery. such as maintaining a particular data representation for

This program mapped nearly perfectly onto the a matrix, rather than the strategy used by our current
Toolkit system. The only data-dependent branches were implementation which leaves the compiler free to store
located at the outermost "is it done yet?" loop. With data values in any place that is convenient, including
the exception of this single instruction end-test, the en- processor registers.
tire program was partially evaluated. The abstract pro- Interestingly, despite the use of partial evaluation, cir-
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cuit simulations involving the Gear integrator ran slowly I/O connection to the Toolkit that would have solved
compared to other circuit simulators. Later investigation this problem was designed, but was never constructed.
revealed that this was primarily because this simulator,
and the Gear integrator in particular, did not employ Clinical Genetic Counseling:
some implementation tricks that are used by other cir- Finally, a program to calculate the probabalistic rela-
cuit simulators such as SPICE. However, another factor tionships over a Bayesian Network like a pedigree was
limiting the performance of this application is that the written by Minghsun Liu. This program was designed
interface between the compiled code implementing the to be used to answer the "What if?" types of ques-
circuit dynamics and the hand-written code implement- tions that arise in genetic counseling when determining
ing the Gear integrator involved a lot of copying of data. the probability that a potential child may have a par-
A better interface that allows the compiler to take the ticular defect. The computation time grows exponen-
ultimate destination of a value into account would pro- tially with the number of "unknown" nodes in the prob-
vide noticeable performance improvement, ability tree. However, if certain assumptions are made

about the relative independence of some of these "un-
Computation of Lyapunov Exponents: known" nodes, partial evaluation can play an important
The toolkit was used in an experiment by Shyam Parekh role, significantly reducing the size of the computation,
to compute the Lyapunov exponents of non-linear sys- as described in more detail in [17] and [18]. For any par-
tems. Lyapunov exponents characterize the divergence ticular program invocation this program performed well.
of the distance between two trajectories in a dynamical However, for successive invocations, execution speed was
system and can serve as an indicator of chaotic behav- hampered by lack of the ability to perform incremental
ior. The Supercomputer Toolkit system was used to do partial evaluation, so that the structure of the network
parameter space scans of chaotic circuits such as the dou- could be locally changed without triggering the need to
ble scroll circuit. These theoretical scans were compared recompile entire probability network.
against actual scans performed using a real circuit. The
results and implementation details of these experiments 12 Conclusions and suggestions for
can be found in [191. future work

An Integration System for Ordinary To the best of our knowledge, the Supercomputer
Differential Equations: Toolkit system is the first to make effective use of the
Sarah Ferguson built a software system on top of the vast amount of low-level parallelism exposed by partial
toolkit compiler that takes an equation as input, and au- evaluation. Partial evaluation proved effective in virtu-
tomatically generates a Scheme program to integrate it. ally all of the applications encountered during the Su-
Sarah's system uses the partial-evaluation features of the percomputer Toolkit project. In some cases, the Toolkit
Toolkit compiler to specialize the integrator for the par- and its compiler created new opportunities to produce
ticular equation being integrated, and to generate code important results in science. In other cases, mostly due
for the main body of the integration. Her system also to shortcomings in the implementation of the compila-
generates a few lines of Toolkit assembly language that tion system, the applications did not map well onto the
implement a data-dependent branch that adjusts the in- Toolkit.
tegration step size based on how much integration error The range of applications that could be run on the Su-
is being encountered. This system performed quite well, percomputer Toolkit would have been greatly expanded
with the data-dependent branches playing a minor role had the Toolkit's compiler provided a way of leaving
that did not significantly affect system performance. selected data-dependent branches and data-structures

Elizabeth Bradley used Sarah Ferguson's integration residual. In this way, heavily data-dependent applica-
system to perform dynamical simulations of chaotic sys- tions such as the Gear integrator, that require the ex-
tems as part of her research on control of chaotic systems istence of data-structures in a particular format (sparse
([20]), including the Lorenz system and the double pen- matrices) on the Toolkit itself could have been written
dulum system. These systems were a perfect match for without the need for hand-coding in Toolkit assembly
both our partial evaluation technology and the Toolkit language.
architecture, and executed extremely quickly. Unfor- The symbolic execution technique for performing par-
tunately, the Toolkit was designed to support applica- tial evaluation of data-independent programs was simple
tions that run for a long time before producing a result, to implement and worked well. We have already devel-
whereas Elizabeth Bradley needed to capture the inter- oped some ways (see [7]) to extend this technique to han-
mediate results that were being produced rapidly. Al- dle certain types of data-dependent branches, and can
though the computationally expensive integration rou- envision extending it to permit certain data-structures
tines mapped very well onto the Toolkit architecture, to be left residual.
the symbolic routines that analyzed the numerical re- With recent developmn.nts in partial evaluation
sults could not be executed on the numerically-oriented technology, the Toolkit's partial evaluator for data-
Toolkit system and had to be run on the workstation independent programs may appear somewhat primitive.
host. The program thus became I/O limited, with the However, a key design goal of our system was to be able
Toolkit computer producing data far more quickly than to take existing highly complex and abstract Scheme
it could be transferred to the workstation host. A faster programs from scientists, unaltered, and run them on
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the Supercomputer Toolkit. These programs often in- Technology, May 1992. Also available as
cluded global state, side-effects, manipulation of com- TR-1377, MIT Artificial Intelligence Lab-
plex data structures such as streams, and the storing oratory, July, 1993.
of higher-order procedures within data-structures. Such [6] A. Berlin, "Partial Evaluation Applied
program features pose serious challenges to partial eval- to Numerical Computation," Proc. 1990
uation technology. It is remarkable that a partial evalua- ACM Conference on Lisp and Functional
tion system such as ours, capable of handling only data- Programming, Nice France, June 1990.
independent programs, could have so large an impact on [7] A. Berlin, "A compilation strategy for nu-
science. merl pr o msibation s t iat e valu-

As hardware technology evolves, the use of partial merical programs based on partial evalu-
evaluation to expose parallelism will play an increas- ation," MIT Artificial Intelligence Labo-
ingly important role. As processor clock speeds increase, bridge, MA., July 1989.
pipeline lengths will grow longer, and will require signifi-
cant amounts of parallelism to keep them full. But more [81 E. Ruf and D. Weise, "Opportunities for
importantly, as it becomes possible to build multiple pro- Online Partial Evaluation", Technical Re-
cessors on a single chip, the vast amount of parallelism port CSL-TR-92-516, Computer Systems
exposed by partial evaluation will play a key role in com- Laboratory, Stanford University, Stanford,
putation, affecting programming language and library CA. 1992.
design as well as the compilation process itself. [9] E. Ruf and D. Weise, "Avoiding Redun-

dant Specialization During Partial Evalu-
13 Acknowledgements ation," In Proceedings of the 1991 ACM
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